200W MONO EASHPIIIIPOWER AMPLIFIER

PRODUCT PREVIEW
■ MONOCHIP BRIDGE MONO AMPLIFIER FOR BASH ${ }^{\circledR}$ ARCHITECTURE
■ 160W OUTPUT POWER @ $R_{L}=4 \Omega$, THD = 0.5\%
■ 200W OUTPUT POWER @ $R_{L}=4 \Omega$, THD = 10\%
■ HIGH DYNAMIC PREAMPLIFIER INPUT STAGES
■ EXTERNAL PROGRAMMABLE FEEDBACK TYPE COMPRESSORS
■ AC COUPLED INPUT TO CLASS AB BRIDGE OUTPUT AMPLIFIER
■ PRECISION RECTIFIERS TO DRIVE THE DIGITAL CONVERTER
■ ON-OFF SEQUENCE/ TIMER WITH MUTE AND STANDBY
■ PROPORTIONAL OVER POWER OUTPUT CURRENT TO LIMIT THE DIGITAL CONVERTER
■ ABSOLUTE POWER BRIDGE OUTPUT

TRANSISTOR POWER PROTECTION
■ ABSOLUTE OUTPUT CURRENT LIMIT

- INTEGRATED THERMAL PROTECTION

■ POWER SUPPLY OVER VOLTAGE PROTECTION
■ FLEXIWATT POWER PACKAGE WITH 27 PIN

- BASH® LICENCE REQUIRED

DESCRIPTION

The STA5150 is a fully integrated power module designed to implement a BASH® amplifier when used in conjunction with STABP01 digital processor.

BLOCK DIAGRAM

This is preliminary information on a new product now in development. Details are subject to change without notice.

DESCRIPTION (continued)

Notice that normally only one Digital Converter is needed to supply a stereo or multi-channel amplifier system, therefore most of the functions implemented in the circuit have summing outputs
The signal circuits are biased by fixed negative and positive voltages referred to Ground. Instead the final stages of the output amplifiers are supplied by two external voltages that are following the audio signal . In this way the headroom for the output transistors is kept at minimum level to obtain a high efficiency power amplifier.
The Compressor circuits, one for each channel, performs a particular transfer behavior to avoid the dynamic restriction that an adaptive system like this requires. To have a high flexibility the attack / release time and the threshold levels are externally programmable. The tracking signal for the external digital converter is generated from the Absolute Value block that rectifies the audio signal present at the compressor output. The outputs of these blocks are decoupled by a diode to permit an easy sum of this signal for the multichannel application. The output power bridges have a dedicated input pin to perform an AC decoupling to cancel the compressor output DC offset. The gain of the stage is equal to $4(+12 \mathrm{~dB})$. A sophisticated circuit performs the output transistor power detector that, with the digital converter, reduces the power supply voltage. Moreover, a maximum current output limiting and the over temperature sensor have been added to protect the circuit itself. The external voltage applied to the STBY/MUTE pin forces the two amplifiers in the proper condition to guarantee a silent turnon and turn-off.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$+\mathrm{V}_{\text {s }}$	Positive supply voltage referred to pin 13 (GND)	30	V
- $\mathrm{V}_{\text {s }}$	Negative supply voltage referred to pin 13 (GND)	-24	V
$\mathrm{V}_{\mathrm{CD}+}$	Positive supply voltage tracking rail referred to pin 13 (GND)	22	V
$\mathrm{V}_{\mathrm{CD}+}$	Positive supply voltage operated to $\mathrm{Vs}_{+}{ }^{(1)}$	0.3	V
$\mathrm{V}_{\text {CD- }}$	Negative supply voltage referred to -Vs ${ }^{(1)}$	-0.3	V
$\mathrm{V}_{\text {CD }}$	Negative supply voltage tracking rail referred to pin 13 (GND)	-22	V
$\mathrm{V}_{\text {Att_Rel }}$	Pin 3 Negative \& Positive maximum voltage reffered to GND (pin 13)	-0.5 to +20	V
$V_{\text {Pwr_Imp }}$	VTrk Pin 7, 10 Negative \& Positive maximum voltage referred to GNC (pin 13)	-20 to +20	V
VIn_pre	Pin 8 Negative \& Positive maximum voltage referred to GND (pin 13)	-0.5 to +0.5	V
$\mathrm{V}_{\text {threshold }}$	Pin 17 Negative \& Positive maximum voltage referred to GND (pin 13)	-7 to +0.5	V
$1 \mathrm{I}_{\text {stb-max }}$	Pin 11 maximum input current (Internal voltage clamp at 5V)	500	$\mu \mathrm{A}$
$\mathrm{V}_{\text {stbymute }}$	Pin 11 negative maximum voltage referred to GND (pin 13)	-0.5	V

Notes: 1. V_{CD}. must not be more negative than -Vs and $\mathrm{V}_{\mathrm{CD}+}$ must not be more positive than $+\mathrm{V}_{\mathrm{S}}$

THERMAL DATA

Symbol	Parameter	Value	Unit
T_{j}	Max Junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {th j_case }}$	Thermal Resistance Junction to case	\max	1

OPERATING RANGE

Symbol	Parameter	Value	Unit
$+\mathrm{V}_{\mathrm{s}}$	Positive supply voltage	+20 to +32	V
$-\mathrm{V}_{\mathrm{s}}$	Negative supply voltage	-10 to -24	V
$\Delta \mathrm{~V}_{\mathrm{s}+}$	Delta positive supply voltage	$5 \mathrm{~V} \leq(\mathrm{Vs}+-\mathrm{VCD}+) \leq 10 \mathrm{~V}$	V
$\mathrm{~V}_{\mathrm{CD}+}$	Positive supply voltage tracking rail	+3 to 20.7	V
$\mathrm{~V}_{\mathrm{CD}}$	Negative supply voltage tracking rail	-20.7 to -3	V
$\mathrm{I}_{\text {in_Max }}$	Current at pin In_Pre related to compressor behaviour	-1 to +1	mA peak
$\mathrm{V}_{\text {trheshold }}$	Voltage at pin Threshold	-5 to 0	V
$\mathrm{~T}_{\text {amb }}$	Ambient Temperature Range	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {sb_max }}$	Pin 11 maximum input current (Internal voltage clmp at 5 V$)$	200	$\mu \mathrm{~A}$

PIN CONNECTION

PIN FUNCTION

${ }^{\circ}$	Name	Description
1	-Vs	Negative Bias Supply
2	CD-P	Channel P Time varying tracking rail negative power supply
3	Att_Rel	Attack release rate
4	OutP	Channel P
5	OutP	Channel P
6	$C D+P$	Channel P positive power supply
7	Pwr_Inp	Input to power stage
8	In_pre	Pre-amp input (virtual ground)
9	Out_pre	Output channel
10	Trk	Absolute value block input
11	Stby/mute	Standby/mute input voltage control
12	Protection	Protection signal for STABP01 digital processor
13	Gnd	Analog Ground
14	+Vs	Positive Bias Supply
15	CD+	Time varying tracking rail positive power supply
16	Trk_out	Reference output for STABP01 digital processor
17	Threshold	Compressor threshold input
18	N.C.	
19	N.C.	
20	N.C.	
21	N.C.	
22	$C D+N$	Channel N positive power supply
23	OutN	Channel N
24	OutN	Channel N
25	N.C.	
26	CD-N	Channel N Time varying tracking rail negative power supply
27	-Vs	Negative Bias Supply

ELECTRICAL CHARACTERISTCS (Test Condition: Vs $+=28 \mathrm{~V}$, $\mathrm{Vs}-=-24 \mathrm{~V}, \mathrm{~V}_{\mathrm{CD}+}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{CD}-}=-20 \mathrm{~V}$, $R_{L}=4 \Omega$, external components at the nominal value $\mathrm{f}=1 \mathrm{KHz}, \mathrm{Tamb}=25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
PREAMPLIFIER AND COMPRESSOR						
Vout clamp	Maximum Voltage at Out_pre pin		10	11	12	Vpeak
$\mathrm{lin}^{\text {n }}$	Audio input current				0.8	mA
$\mathrm{V}_{\text {control }}$	Voltage at Attack_Release pin	Attenuation $=0 \mathrm{~dB}$ Attenuation $=6 \mathrm{~dB}$ Attenuation $=26 \mathrm{~dB}$	$\begin{gathered} 0.35 \\ 6 \end{gathered}$	$\begin{gathered} \hline 0 \\ 0.5 \\ 9 \end{gathered}$	$\begin{gathered} 0.65 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{VC}_{\mathrm{omp}}^{\mathrm{Th}}$ Th	Input voltage range for the compression		-5		-1	V
$\mathrm{Z}_{\text {th }}$	Input impedance of Threshold pin		100			K Ω
Voffset	Output Offset at Out_pre pin with:	$\mathrm{V}_{\mathrm{CRT}}=0 \mathrm{~V}$; Attenuation $=0 \mathrm{~dB}$ $\mathrm{V}_{\text {CRT }}=0.5 \mathrm{~V}$; Attenuation $=6 \mathrm{~dB}$ $\mathrm{V}_{\mathrm{CRT}}=9 \mathrm{~V}$; Attenuation $=26 \mathrm{~dB}$	$\begin{aligned} & \hline-10 \\ & -250 \\ & -450 \end{aligned}$		$\begin{gathered} \hline 10 \\ 250 \\ 450 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
THD	Distortion at Out_pre:	$\mathrm{V}_{\mathrm{CRT}}=0 \mathrm{~V}$; Attenuation $=0 \mathrm{~dB}$ $\mathrm{V}_{\text {CRT }}=0.5 \mathrm{~V}$; Attenuation $=6 \mathrm{~dB}$ $\mathrm{V}_{\mathrm{CRT}}=9 \mathrm{~V}$; Attenuation $=26 \mathrm{~dB}$		0.01	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \\ & \% \end{aligned}$
EN	Noise at Out_pre pin :	$\mathrm{V}_{\mathrm{CRT}}=0 \mathrm{~V}$; Attenuation $=0 \mathrm{~dB}$ $\mathrm{V}_{\text {CRT }}=0.5 \mathrm{~V}$; Attenuation $=6 \mathrm{~dB}$ $\mathrm{V}_{\mathrm{CRT}}=9 \mathrm{~V}$; Attenuation $=26 \mathrm{~dB}$		$\begin{gathered} 10^{(2)} \\ 50 \\ 60 \end{gathered}$		$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$
I_{ct}	Attack time current at pin Attack_release			1.5		mA

2. This value is due to the thermal noise of the external resistors R_{r} and R_{i}.

TRACKING PARAMETERS						
$\mathrm{G}_{\text {trk }}$	Tracking reference voltage gain		13	14	15	V
$V_{\text {trk_out }}$	Tracking ref. output voltage		0	20		V
Itrk_out	Current capability		5	6	7	mA
$\mathrm{Z}_{\text {trk_in }}$	Input impedance ($\mathrm{T}_{\text {rk }}$)			1		$\mathrm{M} \Omega$
OUTPUT BRIDGE						
$\mathrm{G}_{\text {out }}$	Half Output bridge gain		5.5	6	6.5	dB
G_{ch}	Output bridge differential gain		11	12	13	dB
$\Delta \mathrm{G}_{\mathrm{ch}}$	Output bridges gain mismatch		-1		1	dB
Pout	Continuous Output Power	$\begin{aligned} & \hline \text { THD }=0.5 \% \\ & \text { THD }=10 \% \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 190 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 200 \end{aligned}$		$\begin{aligned} & \hline \mathrm{W} \\ & \mathrm{w} \end{aligned}$
THD	Total harmonic distortion of the output bridge	$\mathrm{Po}=5 \mathrm{~W}$		0.01		\%
		$\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{KHz} ; \mathrm{Po}=50 \mathrm{~W}$			0.1	\%
$V_{\text {Off }}$	Output bridge D.C. offset				50	mV
EN	Noise at Output bridge pins	$\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{KHz} ; \mathrm{Rg}=50 \Omega$		12		$\mu \mathrm{V}$
$\mathrm{Z}_{\text {br_in }}$	Input impedance		100	140	180	$\mathrm{K} \Omega$

ELECTRICAL CHARACTERISTCS (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit			
$\mathrm{R}_{\text {dson }}$	Output power Rdson	$\mathrm{lO}=1 \mathrm{~A}$		100	200	$\mathrm{m} \Omega$			
OLG	Open Loop Voltage Gain			100		dB			
GB	Unity Gain Bandwidth			1.4		MHz			
SR	Slew Rate			7		V/ $/ \mathrm{s}$			
PROTECTION									
$\mathrm{V}_{\text {stby }}$	Stby voltage range		0		0.8	V			
$\mathrm{V}_{\text {mute }}$	Mute voltage range		1.6		3	V			
$\mathrm{V}_{\text {play }}$	Play voltage range		4		5	V			
$\mathrm{T}_{\mathrm{h} 1}$	First Over temperature threshold			130		${ }^{\circ} \mathrm{C}$			
Th2	Second Over temperature threshold			150		${ }^{\circ} \mathrm{C}$			
Unbal. Ground	Upper Unbalancing ground threshold	Referred to ($\left.\mathrm{CD}^{+}-\mathrm{CD}^{-}\right) / 2$		5		V			
Unbal. Ground	Lower Unbalancing ground threshold	Referred to (CD^{+}- $\left.\mathrm{CD} \mathrm{D}^{-}\right) / 2$		-5		V			
$\mathrm{UV}_{\text {th }}$	Under voltage threshold	\|Vs+	+	Vs-			20		V
$\mathrm{P}_{\text {d_reg. }}$.	Power dissipation threshold for system regulation	Iprot = 50 $\mu \mathrm{A}$; @ Vds = 10V	64		78	W			
$\mathrm{P}_{\text {d_max }}$	Switch off power dissipation threshold	$@ \mathrm{Vds}=10 \mathrm{~V}$		120		W			
$I_{\text {prot }}$	Protection current slope	for Pd > Pdreg		400		$\mu \mathrm{A} / \mathrm{W}$			
Ict	Limiting Current threshold		12	14	16	A			
I+Vs	Positive supply current	Stby (Vstby/mute pin $=0 \mathrm{~V}$) Mute (Vstby/mute pin $=2.5 \mathrm{~V}$) Play (Vstby/mute pin $=5 \mathrm{~V}$ no signal)		$\begin{gathered} 4 \\ 30 \\ 30 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$			
I-Vs	Negative supply current	Stby (Vstby/mute pin $=0 \mathrm{~V}$) Mute (Vstby/mute pin $=2.5 \mathrm{~V}$) Play (Vstby/mute pin $=5 \mathrm{~V}$ no signal)		$\begin{gathered} 4 \\ 30 \\ 30 \end{gathered}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$			
ICD+	Positive traking rail supply current	Stby (Vstby/mute pin $=0 \mathrm{~V}$) Mute (Vstby/mute pin $=2.5 \mathrm{~V}$) Play (Vstby/mute pin $=5 \mathrm{~V}$ no signal)		$\begin{aligned} & \hline 100 \\ & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$			
ICD-	Negative traking rail supply current	Stby (Vstby/mute pin $=0 \mathrm{~V}$) Mute (Vstby/mute pin $=2.5 \mathrm{~V}$) Play (Vstby/mute pin $=5 \mathrm{~V}$ no signal)		$\begin{aligned} & \hline 100 \\ & 110 \\ & 110 \end{aligned}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$			

FUNCTIONAL DESCRIPTION

The circuit contains all the blocks to build a mono amplifier. It is based on the Output Bridge Power Amplifier, and its protection circuit. Moreover, the compression function and a signal rectifier are added to complete the circuit.
The operation modes are driven by The Turn-on/off sequence block. In fact the IC can be set in three states by the Stby/mute pin:
Standby ($\mathrm{V}_{\text {pin }}<0.8 \mathrm{~V}$), Mute $\left(1.6 \mathrm{~V}<\mathrm{V}_{\text {pin }}<3 \mathrm{~V}\right.$), and Play $\left(\mathrm{V}_{\text {pin }}>4 \mathrm{~V}\right)$.
In the Standby mode all the circuits involved in the signal path are in off condition, instead
in Mute mode the circuits are biased but the Speakers Outputs are forced to ground potential.
These voltages can be get by the external RC network connected to Stby/Mute pin.
The same block is used to force quickly the I.C. In standby mode or in mute mode when the I.C. dangerous condition has been detected. The RC network in these cases is used to delay the Normal operation restore.
The protection of the I.C. are implemented by the Over Temperature, Unbalance Ground, Output Short circuit, Under voltage, and output transistor Power sensing as shown in the following table:

Table 1. Protection Implementation

Fault Type	Condition	Protection strategy	Action time	Release time
Chip Over temperature	$\mathrm{Tj}>130^{\circ} \mathrm{C}$	Mute	Fast	Slow Related to Turn_on sequence
Chip Over temperature	$\mathrm{Tj}>150^{\circ} \mathrm{C}$	Standby	Slow, Related to Turn_on sequence	
Unbalancing Ground	\mid Vgnd $\mid>((\mathrm{CD}+)-$ $(\mathrm{CD}-)) / 2+5 \mathrm{~V}$	Standby	Slow, Related to Turn_on sequence	
Short circuit	Iout $>14 \mathrm{~A}$	Standby	Slow, related to Turn_on sequence	
Under Voltage	$\|\mathrm{Vs}+\|+\|\mathrm{Vs}-\|<20 \mathrm{~V}$	Standby	Slow, related to Turn_on sequence	
Extra power dissipation at output transistor	Pd tr. >64W	Reducing DIGITAL CONVERTER output voltage.	Related to the DIGITAL CONVERTER	Related to the DIGITAL CONVERTER
Maximum power dissipation at output transistor	Pd tr. > 120W	Standby	Fast	Slow, related to Turn_on sequence

See the POWER PROTECTION paragraph for the details

Compression

An other important function implemented, to avoid high power dissipation and clipping distortion, is the Compression of the signal input. In fact the preamplifier stage performs a voltage gain equal to 5 , fixed by Ri and Rr external resistor, but in case of high input signal or low power supply voltage, its gain could be reduced of 26 dB . This function is obtained with a feedback type compressor that, in practice, reduces the impedance of the external feedback network. The behavior of compression it's internally fixed but depends from the Audio input voltage signal level, and from the Threshold voltage applied to the Threshold pin. The attack and release time are programmable by the external RC network connected to the Att_Rel pins.
The constraints of the circuit in the typical application are the following:
Vthreshold range

$$
\begin{aligned}
& =-5 \text { to } 0 \\
& =8 \mathrm{~V} \\
& =10 \mathrm{~V}
\end{aligned}
$$

Vin peak max
Vout peak max

Gain without compression (G) =5
Max Attenuation ratio $=26 \mathrm{~dB}$
The following graph gives the representation of the Compressor activation status related to the Vthreshold and the input voltage. The delimitation line between the two fields, compression or not, is expressed by the formula :

$$
\mathrm{V}_{\mathrm{in}}=\frac{2 \cdot|\mathrm{Vthreshold}|}{\mathrm{G}}
$$

Where G is the preamplifier gain without compression.
In the compression region the gain of the preamplifier will be reduced
($\mathrm{G}=2 \cdot \mathrm{~V}$ threshold/Vin) to maintain at steady state the output voltage equal $2^{*} \mid$ Vthreshold \mid.
Instead in the other region the compressor will be off ($\mathrm{G}=5$).
The delimitation line between the two fields can be related to the output voltage of the preamplifier: in this case the formula is :

$$
V_{\text {out }}=2 \cdot \mid \text { Vthreshold } \mid
$$

Figure 1. Compressor activation field

The relative attenuation introduced by the variable gain cell is the following :

$$
\text { Attenuation }=20 \log _{\frac{2}{5}}^{2} \cdot \frac{\left|\mathrm{~V}_{\mathrm{th}}\right|}{\mathrm{V}_{\text {in_peak }}}
$$

The total gain of the stage will be:

$$
\text { Gdb }=20 \log 5+\text { Attenuation }
$$

The maximum input swing is related to the value of input resistor, to guarantee that the input current remain under lin_Max value (1 mA).

$$
\mathrm{R}_{\mathrm{i}}>\frac{\mathrm{V}_{\text {in_peak }}}{\mathrm{I}_{\text {in_max }}}
$$

Figure 2. Compressor attenuation vs. input amplitude

ABSOLUTE VALUE BLOCK

The absolute value block rectifies the signal after the compression to extract the control voltage for the external digital converter. The output voltage swing is internally limited, the gain is internally fixed to 14.
The input impedance of the rectifier is very high , to allow the appropriate filtering of the audio signal before the rectification (between Out_pre and Trk pins).

OUTPUT BRIDGE

The Output bridge amplifier makes the single-ended to Differential conversion of the Audio signal using two power amplifiers, one in non-inverting configuration with gain equal to 2 and the other in inverting configuration with unity gain. To guarantee the high input impedance at the input pins, Pwr_Inp1 and Pwr_Inp2, the second amplifier stages are driven by the output of the first stages respectively.

POWER PROTECTION

To protect the output transistors of the power bridge a power detector is implemented (fig 3).
The current flowing in the power bridge and trough the series resistor Rsense is measured reading the voltage drop between CD+1 and CD+. In the same time the voltage drop on the relevant power (Vds) is internally measured. These two voltages are converted in current and multiplied: the resulting current, Ipd, is proportional to the instantaneous dissipated power on the relevant output transistor. The current lpd is compared with the reference current lpda, if bigger (dissipated power > 64W) a current, Iprot, is supplied to the Protection pin. The aim of the current lprot is to reduce the reference voltage for the digital converter supplying the power stage of the chip, and than to reduce the dissipated power. The response time of the system must be less than $200 \mu \mathrm{Sec}$ to have an effective protection. As further protection, when Ipd reaches an higher threshold (when the dissipated value is higher then 120W) the chip is shut down, forcing low the Stby/Mute pin, and the turn on sequence is restarted.

Figure 3. Power Protection Block Diagram

In fig. 4 there is the power protection strategy pictures. Under the curve of the 64 W power, the chip is in normal operation, over 120W the chip is forced in Standby. This last status would be reached if the digital converter does not respond quikly enough reducing the stress to less than 120W.
The fig. 5 gives the protection current, Iprot, behavior. The current sourced by the pin Prot follows the formula:

$$
\mathrm{I}_{\text {prot }} \equiv \frac{\left(\mathrm{P}_{\mathrm{d}}-\mathrm{P}_{\mathrm{d} _\mathrm{av} _\mathrm{th}}\right) \cdot 5 \cdot 10^{-4}}{1.25 \mathrm{~V}}
$$

for $\mathrm{P}_{\mathrm{d}}<\mathrm{P}_{\mathrm{d} \text { _av_t }}$ the $\mathrm{I}_{\text {prot }}=0$
Independently of the output voltage, the chip is also shut down in the folowing conditions:
When the currentthrough the sensing resistor, $R_{\text {sense }}$, reaches 14 A (Voltage drop $(C D+)-(C D+1)=700 \mathrm{mV}$).
When the average junction temperature of the chip reaches $150^{\circ} \mathrm{C}$.
When the ground potential differ from more than 5V from the half of the power supply voltage, ((CD+)-(CD-))/2
When the sum of the supply voltage $|\mathrm{Vs}+|+|\mathrm{Vs}-|<20 \mathrm{~V}$
The output bridge is muted when the average junction temperature reaches $130^{\circ} \mathrm{C}$.

Figure 4. Power protection threshold

Figure 5. Protection current behaviour

Figure 6. Test and Application Circuit

EXTERNAL COMPONENTS

Name	Function	Value	Formula
$\begin{aligned} & \hline \mathrm{Ri} \\ & \mathrm{R} 1 \end{aligned}$	Input resistor	$\begin{gathered} 10 \mathrm{~K} \Omega \\ (\|\mathrm{G}\|=5, \mathrm{Rr}=50 \mathrm{~K} \Omega) \end{gathered}$	$\mathrm{R}_{\mathrm{i}}=\frac{\mathrm{Rr}}{\|\mathrm{G}\|}$
$\begin{aligned} & \hline \mathrm{Rr} \\ & \mathrm{R} 2 \end{aligned}$	Feedback resistor	$\begin{gathered} 50 \mathrm{~K} \Omega \\ (\|\mathrm{G}\|=5, \mathrm{Ri}=10 \mathrm{~K} \Omega \end{gathered}$	$\mathrm{Rr}=\|\mathrm{G}\| \cdot \mathrm{Rr}$
$\begin{aligned} & \hline \mathrm{Cac} \\ & \mathrm{C} 1 \end{aligned}$	AC Decoupling capacitor	$\begin{gathered} 100 \mathrm{nF} \\ (\mathrm{fp}=16 \mathrm{~Hz}, \\ \mathrm{Rac}=100 \mathrm{~K} \Omega) \end{gathered}$	$\mathrm{Cac}=\frac{1}{2 \pi \cdot \mathrm{fp} \cdot \mathrm{Rac}}$
$\begin{aligned} & \mathrm{Cct} \\ & \mathrm{C} 2 \end{aligned}$	Capacitor for the attack time	```2.2\muF (Tattack = 13mSec, Vcontrol = 9V, Ict = 1.5mA)```	$\text { Cct }=\operatorname{attack} \frac{\mathrm{Ict}}{\text { Vcontrol }}$
R3	Release constant time Resistor	$\begin{gathered} 470 \mathrm{~K} \Omega \\ (\mathrm{t}=1 \mathrm{Sec} ., \\ \mathrm{Cct}=2.2 \mu \mathrm{~F}) \end{gathered}$	$\text { Rct }=\frac{\tau}{\mathrm{Cct}}$
R4	Resistor for tracking input voltage filter	$10 \mathrm{~K} \Omega$	
R5	Resistor for tracking input voltage filter	$56 \mathrm{~K} \Omega$	
R6	Resistor for tracking input voltage filter	$10 \mathrm{~K} \Omega$	
C3	Capacitor for Tracking input voltage filter	1nF	
C4	Dc decoupling capacitor	$1 \mu \mathrm{~F}$	
R7	Bias Resistor for Stby/Mute function	$10 \mathrm{~K} \Omega$	
R8	Stby/Mute constant time resistor	$30 \mathrm{~K} \Omega$	
R9	Mute resistor	$30 \mathrm{~K} \Omega$	
C5	Capacitor for Stby/Mute resistor	$2.2 \mu \mathrm{~F}$	
$\mathrm{R} 10=\mathrm{R} 11$	Sensing resistor for SOA detector	$\begin{gathered} \hline 50 \mathrm{~m} \Omega \\ 5 \% 4 \mathrm{~W} \end{gathered}$	
R12	Conversion resistor for threshold voltage	$100 \mathrm{~K} \Omega$	
$\mathrm{C} 6=\mathrm{C} 7$	Power supply filter capacitor	100nF	
$\mathrm{R} 15=\mathrm{R} 16$	Centering resistor	400Ω, 1W	
C8 = C9	Tracking rail power supply filter	680 nF	
R13	Protection	$1 \mathrm{~K} \Omega$	
R14	TRK_out	$40 \mathrm{~K} \Omega$	
$\mathrm{C} 10=\mathrm{C} 11$	Power supply filter capacitor	$470 \mu \mathrm{~F}, 63 \mathrm{~V}$	
C12	Feedback capacitor	100pF	
D1	Schottky diode	SB360	

Note: Vcontrol is the voltage at Att_Rel pin.

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.45	4.50	4.65	0.175	0.177	0.183
B	1.80	1.90	2.00	0.070	0.074	0.079
C		1.40			0.055	
D	0.75	0.90	1.05	0.029	0.035	0.041
E	0.37	0.39	0.42	0.014	0.015	0.016
F (1)			0.57			0.022
G	0.80	1.00	1.20	0.031	0.040	0.047
G1	25.75	26.00	26.25	1.014	1.023	1.033
H (2)	28.90	29.23	29.30	1.139	1.150	1.153
H1		17.00			0.669	
H2		12.80			0.503	
H3		0.80			0.031	
L (2)	22.07	22.47	22.87	0.869	0.884	0.904
L1	18.57	18.97	19.37	0.731	0.747	0.762
L2 (2)	15.50	15.70	15.90	0.610	0.618	0.626
L3	7.70	7.85	7.95	0.303	0.309	0.313
L4		5			0.197	
L5		3.5			0.138	
M	3.70	4.00	4.30	0.145	0.157	0.169
M1	3.60	4.00	4.40	0.142	0.157	0.173
N		2.20			0.086	
O		2			0.079	
R		1.70			0.067	
R1		0.5			0.02	
R2		0.3			0.12	
R3		1.25			0.049	
R4		0.50			0.019	
V	5° (Typ.)					
V1	$3{ }^{\circ}$ (Typ.)					
V2	20 (Typ.)					
V3	45° (Typ.)					

Flexiwatt27
(1): dam-bar protusion not included
(2): molding protusion included

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics ® 2002 STMicroelectronics - All Rights Reserved
EASEMIIII is the registered trademark and patented technology of INDIGO manufacturing inc.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States..
http://www.st.com

